(本小题满分16分)已知双曲线C:的两个焦点为F1(-2,0),F2(2,0),点P在曲线C上。(1)求双曲线C的方程;(2)记O为坐标原点,过点Q(0,2)的直线与双曲线C相交于不同两点E,F,若△OEF的面积为,求直线的方程。
某电器商经过多年的经验发现本店每个月售出的电冰箱的台数是一个随机变量,它的分布列如下:
设每售出一台电冰箱,电器商获利300元。如销售不出而囤积于仓库,则每台每月需花保养费100元。问电器商每月初购进多少台电冰箱才能使自己月平均收益最大?
若、、,且满足,求的最大值。
已知椭圆(),过椭圆中心O作互相垂直的两条弦AC、BD,设点A、B的离心角分别为和,求的取值范围。
)求证:(1)(2)
一个同心圆形花坛,分为两部分,中间小圆部分种植草坪和绿色灌木,周围的圆环分为n(n≥3,n∈N)等份,种植红、黄、蓝三色不同的花,要求相邻两部分种植不同颜色的花. (1)如图1,圆环分成的3等份为a1,a2,a3,有多少不同的种植方法?如图2,圆环分成的4等份为a1,a2,a3,a4,有多少不同的种植方法? (2)如图3,圆环分成的n等份为a1,a2,a3,……,an,有多少不同的种植方法?