一个不透明的袋中装有红、黄、白三种颜色的球共100个,它们除颜色外都相同,其中黄球的个数是白球个数的2倍少5个,已知从袋中摸出一个球是红球的概率是.求袋中红球的个数;求从袋中摸出一个球是白球的概率;取走10个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率.
如图1,已知三角形ABC中,AB=BC=1,∠ABC=90度,把一块含30度角的三角板DEF的直角顶点D放在AC的中点上,将直角三角板DEF绕D点按逆时针方向旋转。 (1)在图1中,DE交AB于M,DF交BC于N. ①直接写出DM、DN的数量关系; ②在这一过程中,直角三角板DEF与三角形ABC的重叠部分为四边形DMBN,请说明四边形DMBN的面积是否发生变化?若发生变化,请说明如何变化的;若不发生变化,请求出其面积. (2)继续旋转至如图2的位置,延长AB交DE于M,延长BC交DF于N,DM=DN是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
如图,四边形ABCD是正方形,以CG为一边在正方形ABCD外作正方形CEFG,连结BG,DE,猜想如图中线段BG、线段DE的关系并证明.
如图,要设计一副宽20cm,长30cm的矩形图案,其中有两横两竖的彩条,横竖彩条的宽度都相同,如果使剩余面积为原矩形图案面积的,应如何设计每个彩条的宽度?
已知关于的方程,有两个不相等的实数根: (1)求的取值范围; (2)若这个方程有一个根为2,求的值.
用适当方法解方程:(每小题4分,共16分) (1) (2) (3) (4)