已知数列的各项均为正数,前项和为,且(1)求证数列是等差数列;(2)设…,求。
已知函数 (1)求曲线在点处的切线的方程; (2)直线为曲线的切线,且经过原点,求直线的方程及切点的坐标; (3)如果曲线的某一切与直线垂直,求切点坐标和切线方程。
如图,四棱锥P-ABCD的底面为矩形,且AB=,BC=1,E,F分别为AB,PC中点. (1)求证:EF∥平面PAD; (2)若平面PAC⊥平面ABCD,求证:平面PAC⊥平面PDE.
已知命题“方程表示焦点在轴上的椭圆”,命题“方程表示双曲线”. (1)若是真命题,求实数的取值范围; (2)若是真命题,求实数的取值范围; (3)若“”是真命题,求实数的取值范围.
已知。 (1)若,求的展开式中的系数; (2)证明:。
抛掷A,B,C三枚质地不均匀的纪念币,它们正面向上的概率如下表所示;
将这三枚纪念币同时抛掷一次,设表示出现正面向上的纪念币的个数。 (1)求的分布列及数学期望; (2)在概率中,若的值最大,求a的最大值。