为赢得2010年上海世博会的制高点,某商家最近进行了新科技产品的市场分析,调查显示,新产品每件成本9万元,售价为30万元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:万元, )的平方成正比,已知商品单价降低2万元时,一星期多卖出24件.(1)将一个星期的商品销售利润表示成的函数;(2)如何定价才能使一个星期的商品销售利润最大?
如图,在三棱锥P -ABC中,点P在平面ABC上的射影D是AC的中点.BC ="2AC=8,AB" =(I )证明:平面PBC丄平面PAC(II)若PD =,求二面角A-PB-C的平面角的余弦值.
某大学体育学院在2012年新招的大一学生中,随机抽取了 40名男生,他们的身高(单位:cm)情况共分成五组:第1组[175,180),第 2 组[180,185),第 3 组 [185,190),第 4 组[190,195),第 5 组[195,200) .得到的频率分布直方图(局部)如图所示,同时规定身高在185cm以上(含185cm)的学生成为组建该校篮球队的“预备生”.(I)求第四组的频率并补布直方图;(II)如果用分层抽样的方法从“预备生”和“非预备生”中选出5人,再从这5人中随机选2人,那么至少有1人是“预备生”的概率是多少?(III)若该校决定在第4,5组中随机抽取2名学生接受技能测试,第5组中有ζ名学生接受测试,试求ζ的分布列和数学期望.
已ΔABC的内角A,B,C对的边分别为a,b,c =" (2a,C" -26) , = (cosC,l),且丄.(I)求角A的大小;(II )若a = 1,求b +c的取值范围.
已知函数.(I)证明:;(II)求不等式的解集.
在直接坐标系中,直线的方程为,曲线的参数方程为(为参数) (I)已知在极坐标(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,点的极坐标为(4,),判断点与直线的位置关系;(II)设点是曲线上的一个动点,求它到直线的距离的最小值.