已知函数在定义域上单调递减,又当,且时,.(Ⅰ)证明是奇函数; (Ⅱ)求不等式的解集.
已知数列的相邻两项,是关于方程的两根,且.(1)求证:数列是等比数列;(2)求数列的前项和;(3)设函数,若对任意的都成立,求实数 的取值范围.
某投资公司计划投资A,B两种金融产品,根据市场调查与预测,A产品的利润y1与投资金额x的函数关系为y1=18-,B产品的利润y2与投资金额x的函数关系为y2=(注:利润与投资金额单位:万元).(1)该公司已有100万元资金,并全部投入A,B两种产品中,其中x万元资金投入A产品,试把A,B两种产品利润总和表示为x的函数,并写出定义域;(2)在(1)的条件下,试问:怎样分配这100万元资金,才能使公司获得最大利润?其最大利润为多少万元?
某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可继续参加科目B的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书.现某人参加这项考试,科目A每次考试成绩合格的概率均为,科目B每次考试成绩合格的概率均为.假设各次考试成绩合格与否均互不影响.(1)求他不需要补考就可获得证书的概率;(2)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为,求 的分布列及数学期望E.
等差数列的各项均为正数,,前项和为,为等比数列, ,且 .(1)求与;(2)求数列的前项和.
为加快旅游业的发展,新余市2013年面向国内发行总量为200万张的“仙女湖之旅”优惠卡,向省外人士发行的是金卡,向省内人士发行的是银卡.某旅游公司组织了一个有36名游客的旅游团到新余仙女湖旅游,其中是省外游客,其余是省内游客.在省外游客中有持金卡,在省内游客中有持银卡.(1)在该团中随机采访2名游客,求恰有1人持银卡的概率;(2)在该团中随机采访2名游客,求其中持金卡与持银卡人数相等概率.