已知椭圆的离心率为,两焦点之间的距离为4.(Ⅰ)求椭圆的标准方程;(Ⅱ)过椭圆的右顶点作直线交抛物线于A、B两点,(1)求证:OA⊥OB;(2)设OA、OB分别与椭圆相交于点D、E,过原点O作直线DE的垂线OM,垂足为M,证明|OM|为定值.
已知函数.(1)求的最小正周期;(2)设,且,求.
已知向量,,,.(1)求与的夹角;(2)若,求实数的值.
如图,矩形的顶点为原点,边所在直线的方程为,顶点的纵坐标为.(1)求边所在直线的方程;(2)求矩形的面积.
设R,函数.(1)若x=2是函数y=f(x)的极值点,求实数a的值;(2)若函数在区间[0,2]上是减函数,求实数a的取值范围.
如图,矩形ABCD中,|AB|=4,|BC|=2,E,F,M,N分别是矩形四条边的中点,G,H分别是线段ON,CN的中点.(1)证明:直线EG与FH的交点L在椭圆W:上;(2)设直线l:与椭圆W:有两个不同的交点P,Q,直线l与矩形ABCD有两个不同的交点S,T,求的最大值及取得最大值时m的值.