解不等式,并在数轴上表示它的解集.
(本题8分)某校九年级举行英语演讲比赛,派了两位老师去学校附件的超市购买笔记本作为奖品.经过了解得知,该超市的A,B两种笔记本的价格分别是12元和8元,他们准备购买这两种笔记本共30本.如果他们计划用300元购买奖品,那么能买这两种笔记本各多少本?两位老师根据演讲比赛的设奖情况,决定所购买的A种笔记本的数量要少于B种笔记本数量的,但又不少于B种笔记本数量的,如果设他们买A种笔记本n本,买这两种笔记本共花费w元.① 请写出w(元)关于n(本)的函数关系式,并求出有哪几种购买方案?②请你帮他们计算,购买这两种笔记本各多少时,花费最少,此时的花费是多少元?
(本题7分)如图,E是正方形ABCD对角线BD上的一点,(1)求证:AE=CE.(2)若AD=,,求AE的长.
(本题7分)“校园手机”现象越来越受到社会的关注.小丽在“统计实习”活动中随机调查了学校若干名学生家长对“中学生带手机到学校”现象的看法,统计整理并制作了如下的统计图 (1)求这次调查的家长总数及家长表示“无所谓”的人数,并补全图①;(2)求图②中表示家长“无所谓”的圆心角的度数;(3)若该学校有2000名家长,请根据该统计结果估算表示“基本赞成”的家长有多少人?
(本题6分)先化简,再求值:,其中x的值满足:.
如图所示,在梯形ABCD中,已知AB∥DC, AD⊥DB,AD=DC=CB,AB=4.以AB所在直线为轴,过D且垂直于AB的直线为轴建立平面直角坐标系.(1)求∠DAB的度数及A、D、C三点的坐标;(2)求过A、D、C三点的抛物线的解析式及其对称轴L.(3)若P是抛物线的对称轴L上的点,那么使PDB为等腰三角形的点P有几个?(不必求点P的坐标,只需说出个数即可)