(本小题满分12分)函数f(x)=ax2-2(a-1)x-2lnx ,a>0 (1)求函数f(x)的单调区间;(2)对于函数图像上的不同两点A(x1,y1),B(x2,y2),如果在函数图像上存在点P(x0,y0)(其中x0在x1与x2之间),使得点P处的切线l平行于直线AB,则称AB存在“伴随切线”,当x0= 时,又称AB存在“中值伴随切线”.试问:在函数f(x)的图像上是否存在不同两点A,B,使得AB存在“中值伴随切线”?若存在,求出A,B的坐标;若不存在,说明理由
已知函数(为常数,是自然对数的底数),曲线在点处的切线与轴平行. (Ⅰ)求的值; (Ⅱ)求的单调区间; (Ⅲ)设,其中为的导函数.证明:对任意.
已知椭圆的中心在原点,焦点在轴上,离心率为,它的一个顶点恰好是抛物线的焦点. (Ⅰ)求椭圆的方程; (Ⅱ)过点的直线与椭圆相切,直线与轴交于点,当为何值时的面积有最小值?并求出最小值.
已知函数·(其中>o),且函数的最小正周期为 (I)求f(x)的最大值及相应x的取值 (Ⅱ)将函数y= f(x)的图象向左平移单位长度,再将所得图象各点的横坐标缩小为原来的倍(纵坐标不变)得到函数y=g(x)的图象.求函数g(x)的单调区间.
如图所示,在四棱锥中,底面为矩形,平面,点在线段上,平面. (Ⅰ)证明:平面; (Ⅱ)若,,求二面角的正切值.
某高校在2013年考试成绩中100名学生的笔试成绩的频率分布直方图如图所示, (1)分别求第3,4,5组的频率; (2)若该校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试, ① 已知学生甲和学生乙的成绩均在第三组,求学生甲和学生乙不同时进入第二轮面试的概率; ② 若第三组被抽中的学生实力相当,在第二轮面试中获得优秀的概率均为,设第三组中被抽中的学生有名获得优秀,求的分布列和数学期望。