(本小题满分12分)函数f(x)=ax2-2(a-1)x-2lnx ,a>0 (1)求函数f(x)的单调区间;(2)对于函数图像上的不同两点A(x1,y1),B(x2,y2),如果在函数图像上存在点P(x0,y0)(其中x0在x1与x2之间),使得点P处的切线l平行于直线AB,则称AB存在“伴随切线”,当x0= 时,又称AB存在“中值伴随切线”.试问:在函数f(x)的图像上是否存在不同两点A,B,使得AB存在“中值伴随切线”?若存在,求出A,B的坐标;若不存在,说明理由
在ΔABC中,角A、B、C所对的边分别为a、b、c,且。 (I)求的值。 (II)若,,求∠C。
(本小题满分12分) 如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点为顶点的三角形的周长为,一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于项点的任一点,直线和与椭圆的交点分别为A、B和C、D. (Ⅰ)求椭圆和双曲线的标准方程; (Ⅱ)设直线、的斜率分别为、,证明:; (Ⅲ)是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.
两定点的坐标分别A(-1,0),B(2,0),动点M满足条件,求动点M的轨迹方程并指出轨迹是什么图形
直线与抛物线(p0)交于A、B两点,且(O为坐标原点),求证: (1)A、B两点的横坐标之积,纵坐标之积都是常数; (2)直线AB经过x轴上一个定点.
某单位建造一间地面面积为12的背面靠墙的矩形小屋,房屋正面的造价为1200元/,房屋侧面造价为800元/,屋顶的总造价为5800元,如果墙面高为3m,且不计房屋背面费用,问怎样设计房屋能使得总造价最低,最低造价为多少元?