如图(1),在□ABCD中,P是CD边上的一点,AP与BP分别平分∠DAB和∠CBA。判断△APB是什么三角形?证明你的结论;比较DP与PC的大小;如图(2)以AB为直径作半圆O,交AD于点E,连结BE与AP交于点F,若AD=5cm,AP=8cm,求证△AEF∽△APB,并求tan∠AFE的值。
甲、乙两车同时从地出发,以各自的速度匀速向地行驶.甲车先到达地,停留1小时后按原路以另一速度匀速返回,直到两车相遇.乙车的速度为每小时60千米.下图是两车之间的距离(千米)与乙车行驶时间(小时)之间的函数图象. (1)两车行驶3小时后,两车相距▲千米; (2)请在图中的()内填上正确的值,并直接写出甲车从到的行驶速度; (3)求从甲车返回到与乙车相遇过程中与之间的函数关系式,并写出自变量的取值 范围. (4)求出甲车返回时的行驶速度及、两地之间的距离.
.(8分)如图,四边形是平行四边形,以AB为直径的⊙O经过点D,点E是⊙O上一点,且∠AED=45°。 (1)试判断CD与⊙O的位置关系,并说明理由; (2)若⊙O的半径为,,求∠ADE的正弦值.
如图,有两个可以自由转动的均匀转盘、,转盘上一条直径与一条半径垂直,转盘被分成相等的3份,并在每份内均标有数字.小明和小刚用这两个转盘做游戏,游戏规则如下: ①分别转动转盘与; ②两个转盘停止后,将两个指针所指份内的数字相加(如果指针恰好停在等分线上,那么重转一次,直到指针指向某一份为止); ③如果和为0,则小明获胜;否则小刚获胜. (1)用列表法(或树状图)求小明获胜的概率; (2)你认为这个游戏对双方公平吗?如果你认为不公平,请适当改动规则使游戏对双方公平.
( 8分)某校组织学生到外地进行综合实践活动,共有680名学生参加,并携带300件行李.学校计划租用甲、乙两种型号的汽车共20辆.经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李. ⑴如何安排甲、乙两种汽车可一次性地将学生和行李全部运走?有哪几种方案? ⑵如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案
如图,在3×3的正方形网格中,每个网格都有三个小正方形被涂黑. (1)在图①中将一个空白部分的小正方形涂黑,使其余空白部分是轴对称图形但不是中心对称图形. (2)在图②中将两个空白部分的小正方形涂黑,使其余空白部分是中心对称图形但不是轴对称图形.