如图,梯形ABCD中,AD∥BC,BC=20cm,AD=10cm,现有两个动点P、Q分别从B、D两点同时出发,点P以每秒2cm的速度沿BC向终点C移动,点Q以每秒1cm的速度沿DA向终点A移动,线段PQ与BD相交于点E,过E作EF∥BC交CD于点F,射线QF交BC的延长线于点H,设动点P、Q移动的时间为t(单位:秒,0<t<10)。当t为何值时,四边形PCDQ为平行四边形?在P、Q移动的过程中,线段PH的长是否发生改变?如果不变,求出线段PH的长;如果改变,请说明理由。
如图,A、D、B、C是⊙O上的四点,∠ ADC=∠CDB=60°,判断ABC的形状并证明你的结论
已知二次函数的图象如图所示,它与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3)。(1)求出b,c的值,并写出此二次函数的解析式;(2)根据图象,写出函数值y为正数时,自变量x的取值范围
如图,在平面直角坐标系中,四边形ABCD的四个顶点的坐标分别是A(1,3)、B(2,2)、C(2,1),D(3,3).(1)以原点O为位似中心,相似比为2,将图形放大,画出符合要求的位似四边形;(2)在(1)的前提下,写出点A的对应点坐标A′
如图10-1,在平面直角坐标系中,点在轴的正半轴上, ⊙交轴于 两点,交轴于两点,且为的中点,交轴于点,若点的坐标为(-2,0),(1)(3分)求点的坐标. (2)(3分)连结,求证:∥(3)(4分) 如图10-2,过点作⊙的切线,交轴于点.动点在⊙的圆周上运动时,的比值是否发生变化,若不变,求出比值;若变化,说明变化规律
如图9,抛物线与轴交于、两点(点在点的左侧),抛物线上另有一点在第一象限,满足∠为直角,且恰使△∽△.(1)(3分)求线段的长. (2)(3分)求该抛物线的函数关系式.(3)(4分)在轴上是否存在点,使△为等腰三角形?若存在,求出所有符合条件的点的坐标;若不存在,请说明理由.