设 f ( x ) = a e x + 1 a e x + b ( a > 0 ) .
(I)求 f ( x ) 在 [ 0 , + ∞ ) 上的最小值; (II)设曲线 y = f ( x ) 在点 ( 2 , f ( 2 ) ) 的切线方程为 y = 3 2 x ;求 a , b 的值.
设椭圆方程为,过原点且倾斜角为的两条直线分别交椭圆于A、C和B、D两点.(1)用表示四边形ABCD的面积S;(2)当时,求S的最大值.
若直线y=x+t与椭圆相交于A、B两点,当t变化时,求|AB|的最大值.
求经过点P(1,1),以y轴为准线,离心率为的椭圆的中心的轨迹方程
求椭圆为参数)的准线方程
已知圆的参数方程(1)设时对应的点这P,求直线OP的倾斜角;(2)若此圆经过点(m,1),求m的值,其中;(3)求圆上点到直线距离的最值.