(本小题满分16分)如图,椭圆的右焦点为,右准线为,(1)求到点和直线的距离相等的点的轨迹方程。(2)过点作直线交椭圆于点,又直线交于点,若,求线段的长;(3)已知点的坐标为,直线交直线于点,且和椭圆的一个交点为点,是否存在实数,使得,若存在,求出实数;若不存在,请说明理由。
四棱锥中,底面是边长为8的菱形,,若, 平面⊥平面,、分别为、的中点。 (1)求证:; (2)求证:⊥; (3)求三棱锥的体积.
已知向量,,函数。 (1)求函数的对称中心; (2)在中,分别是角的对边,且,,且,求的值.
已知圆,直线过定点. (1)若与圆相切,求的方程。 (2)若与圆相交于、两点,若,求此时直线的方程.
数列是公比为的正项等比数列,,。 (1)求的通项公式; (2)令,求的前项和.
已知数列中,. (1)设,求数列的通项公式; (2)求使不等式成立的的取值范围.