已知四边形ABCD,对角线AC、BD交于点O.现给出四个条件:①AC⊥BD;②AC平分对角线BD;③AD∥BC;④∠OAD=∠ODA,请你以其中的三个条件作为命题的题设,以“四边形ABCD为菱形”作为命题的结论.写出一个真命题,并证明写出一个假命题,并举出一个反例说明
如图,平行四边形ABCD(两组对边平行且相等)的边长AB=4,BC=2,若把它放在直角坐标系内,使AB在x轴上,点C在y轴上,点A的坐标是(-3,0),求点B、C、D的坐标.
如图,在平面直角坐标系中,A(﹣2,2),B(﹣3,﹣2) (1)若点D与点A关于y轴对称,则点D的坐标为 . (2)将点B先向右平移5个单位再向上平移1个单位得到点C,则点C的坐标为 . (3)求A,B,C,D组成的四边形ABCD的面积。
如图△ABC与△DEA是两个全等的等腰直角三角形,∠BAC=∠D=90°,△DEA 绕点A旋转,边AD、AE与BC分别与AD、AE相交于点F、G,CB=5.回答下列问题:(1)求证:△GAF∽△GBA;(2)求证:AF2=FG•FC;(3)设y=AF2+AG2,FG=x,求y与x的函数关系式;(不要求写出自变量的取值范围)(4)探究BF2、FG2、GC2之间的关系,证明你的结论.
如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦于点E,交⊙O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF、BF,求∠ABF的度数;(3)如果CD=15,BE=10,sinA=,求⊙O的半径.
如图,已知点I是△ABC的内心,AI交BC于D,交外接圆O于E,求证:(1)IE=EC;(2)IE2=ED•EA.