已知某种水果的批发单价与批发量的函数关系如图(1)所示.请说明图中①、②两段函数图象的实际意义.写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.
在因式分解中,有一类形如x2+(m+n)x+mn的多项式,其常数项是两个因数的积,而它的一次项系数恰是这两个因数的和,则我们可以把它分解成x2+(m+n)x+mn=(x+m)(x+n).例如:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3).你能运用上述方法分解多项式x2﹣5x﹣6吗?
分解因式:(x2+3x﹣3)(x2+3x+1)﹣5.
已知:a2﹣b2=(a﹣b)(a+b);a3﹣b3=(a﹣b)(a2+ab+b2);a4﹣b4=(a﹣b)(a3+a2b+ab2+b3);按此规律,则: (1)a5﹣b5=(a﹣b)( _________ ); (2)若a﹣=2,你能根据上述规律求出代数式a3﹣的值吗?
求值:(2+1)•(22+1)•(24+1)•(28+1)•(216+1)﹣232.
利用平方差公式计算99992.