在学习因式分解时,我们学习了提公因式法和公式法(平方差公式和完全平方公式),事实上,除了这两种方法外,还有其它方法可以用来因式分解,比如配方法。例如,如果要因式分解时,显然既无法用提公因式法,也无法用公式法,怎么办呢?这时,我们可以采用下面的办法:===......解决下列问题:填空:在上述材料中,运用了 的思想方法,使得原题变为可以继续用平方差公式因式分解,这种方法就是配方法;显然所给材料中因式分解并未结束,请依照材料因式分解;请用上述方法因式分解;
解下列方程:(1)(2).
先化简,再求值:的值,其中,.
(6分)如图所示的几何体是由几个相同的正方体搭成的, 请画出它的三视图.
在□ABCD中,G为BC延长线上一点,射线AG与直线BD相交于E、与直线CD相交于F.求证:;求证:AE2=EF●EG;如果把“G为BC延长线上一点”改为“G为线段BC上一点(不与点B、C重合)”,其它条件不变,(2)中的结论是否成立吗?若成立,请你加以证明;若不成立,请你说明理由。
如图:靠着22 m的房屋后墙,围一块150 m2的矩形鸡场,现在有篱笆共40 m。求矩形的长、宽各多少米?若把“围一块150 m2的矩形鸡场”改为“围一块Sm2的矩形鸡场”其它条件不变,能否使S最大。若能,请你求出此时矩形的长、宽及最大面积;若不能,请你说明理由。