某中学学生会为了解该校学生喜欢球类活动的情况,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的球类),并将调查的结果绘制成如下的两幅不完整的统计图.请根据途中提供的信息,解答下列问题:参加调查的人数共有 ▲ 人;在扇形图中,表示“其它球类”的扇形的圆心角为 ▲ 度;将条形图补充完整;若该校有2000名学生,则估计喜欢“篮球”的学生共有多少人?
如图,在△ABC中,∠ACB=90°,E为BC上一点,以CE为直径作⊙O,AB与⊙O相切于点D,连接CD,若BE=OE=2.(1)求证:∠A=2∠DCB;(2)求图中阴影部分的面积(结果保留和根号).
如图,在△ABC中,D、E分别是AB、AC的中点.BE=2DE,延长DE到点F,使得EF=BE,连接CF. (1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.
李大爷几年前承包了甲、乙两片荒山,各栽100棵杨梅树,现已结果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量数如折线统计图所示.(1)分别计算甲、乙两片山上杨梅产量数样本的平均数;(2)试通过计算说明,哪片山上的杨梅产量较稳定?
如图,从热气球P上测得两建筑物A、B的底部的俯角分别为45°和30°,如果A、B两建筑物的距离为60米,P点在地面上的正投影恰好落在线段AB上,求热气球P的高度.(结果保留根号)
解方程:(1)x2+10="7x" (2)2x2+4x-5=0