某市为争创全国文明卫生城,2008年市政府对市区绿化工程投入的资2000万元,2010年投入的资金是2420万元,且从2008年到2010年,两年间每年投入资金的年平均增长率相同.求该市对市区绿化工程投入资金的年平均增长率;若投入资金的年平均增长率不变,那么该市在2012年需投入多少万元?
如图,抛物线y=x2+bx+c与x轴交于A(-1,0),B(3,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标.
在一个口袋里有四个完全相同的小球,把它们分别标号为1,2,3,4,小明和小强采取的摸取方法分别是:小明:随机摸取一个小球记下标号,然后放回,再随机摸取一个小球,记下标号;小强:随机摸取一个小球记下标号,不放回,再随机摸取一个小球,记下标号.(1)用画树状图(或列表法)分别表示小明和小强摸球的所有可能出现的结果;(2)分别求出小明和小强两次摸球的标号之和等于5的概率.
如图①,△OAB中,A(0,2),B(4,0),将△AOB向右平移m个单位,得到△O′A′B′.(1)当m=4时,如图②.若反比例函数y =的图象经过点A′,一次函数y=ax+b的图象经过A′、B′两点.求反比例函数及一次函数的表达式;(2)若反比例函数y=的图象经过点A′及A′B′的中点M,求m的值.
如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3)(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)求出(2)中C点旋转到C2点所经过的路径长(保留根号和π)
已知抛物线y=ax2+2x+c与x轴交于A(1,0)和点B,与y轴交于点C(0,-3). (1) 求抛物线的解析式. (2) 如图1,已知点H的坐标为(0,1),设点M为y轴左侧抛物线上的一个动点,试猜想:是否存在这样的点M,使的值最大,如果存在,请求出点M的坐标;如果不存在,请说明理由. (3) 如图2,过x轴上点E(-2,0)作交抛物线于点D,在y轴上找一点F,使的周长最小,求出此时点F的坐标; (4) 如图3,已知点N(0,-1).问在抛物线上是否存在点Q(点Q在y轴的左侧),使得△QNC的面积与△QNA的面积相等?若存在,求出点Q的坐标,若不存在,请说明理由;