小明、小亮和小强三人准备下象棋,他们约定用“抛硬币”的游戏方式来确定哪两人先下棋,规则:三人手中各持有一枚质地均匀的硬币,他们同时将手中硬币抛落到水平地面为一个回合,落地后,三枚硬币中,恰有两枚正面向上或者反面向上的两人先下棋;若三枚硬币均正面向上或反面向上则不能确定哪两人先下棋。请你完成下面表示游戏一个回合所有可能出现的结果的树状图(你也可自己另外画树状图或列表格);求一个回合能确定两人先下棋的概率.
如图,直线与轴交于,与轴交于,以为边作矩形,点在轴上,双曲线经过点与直线交于,轴于,则.
如图:在平面直角坐标系中,将长方形纸片ABCD的顶点B与原点O重合,BC边放在x轴的正半轴上,AB=3,AD=6,将纸片沿过点M的直线折叠(点M在边AB上),使点B落在边AD上的E处(若折痕MN与x轴相交时,其交点即为N),过点E作EQ⊥BC于Q,交折痕于点P。①当点分别与AB的中点、A点重合时,那么对应的点P分别是点、,则(,)、(,);②当∠OMN=60°时,对应的点P是点,求的坐标;若抛物线,是经过(1)中的点、、,试求a、b、c的值;在一般情况下,设P点坐标是(x,y),那么y与x之间函数关系式还会与(2)中函数关系相同吗(不考虑x的取值范围)?请你利用有关几何性质(即不再用、、三点)求出y与x之间的关系来给予说明.
观察发现 如题27(a)图,若点A,B在直线同侧,在直线上找一点P,使AP+BP的值最小. 做法如下:作点B关于直线的对称点,连接,与直线的交点就是所求的点P 再如题27(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小. 如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这 点就是所求的点P,故BP+PE的最小值为.实践运用 如题27(c)图,已知⊙O的直径CD为4,弧AD所对圆心角的度数为60°,点B是弧AD的中点,请你在直径CD上找一点P,使BP+AP的值最小,并求BP+AP的最小值.拓展延伸 如题27(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留 作图痕迹,不必写出作法.
如图,BD是⊙O的直径,A、C是⊙O上的两点,且AB=AC,AD与BC的延长线交于点E.求证:△ABD∽△AEB;若AD=1,DE=3,求⊙O半径的长.
一量角器所在圆的直径为10厘米,其外缘有A、B两点,其读数、分别为71°和47°.劣弧AB所对圆心角是多少度?求劣弧AB的长;问A、B之间的距离是多少?(可用计算器,精确到0.1)