判断下列事件哪些是必然事件,哪些是不确定事件,哪些是不可能事件?事件1:三条边对应相等的两个三角形全等事件2:三个角对应相等的两个三角形全等事件3:有两边和其中一边上的中线对应相等的两个三角形全等事件4:有两边和其中一边的对角对应相等的两个三角形全等事件5:有两角和其中一角的对边对应相等的两个三角形全等对于事件4,现在我们通过画图来说明。例如,已知∠α和线段a,b.用直尺和圆规作△ABC,使得∠C=∠α,AC=b,AB=a
计算: 4 + | - 2 | - 3 2 .
在几何体表面上,蚂蚁怎样爬行路径最短?
(1)如图①,圆锥的母线长为 12 cm , B 为母线 OC 的中点,点 A 在底面圆周上, AC ̂ 的长为 4 πcm .在图②所示的圆锥的侧面展开图中画出蚂蚁从点 A 爬行到点 B 的最短路径,并标出它的长(结果保留根号).
(2)图③中的几何体由底面半径相同的圆锥和圆柱组成. O 是圆锥的顶点,点 A 在圆柱的底面圆周上,设圆锥的母线长为 l ,圆柱的高为 h .
①蚂蚁从点 A 爬行到点 O 的最短路径的长为 l + h (用含 l , h 的代数式表示).
②设 AD ̂ 的长为 a ,点 B 在母线 OC 上, OB = b .圆柱的侧面展开图如图④所示,在图中画出蚂蚁从点 A 爬行到点 B 的最短路径的示意图,并写出求最短路径的长的思路.
已知二次函数 y = a x 2 + bx + c 的图象经过 ( - 2 , 1 ) , ( 2 , - 3 ) 两点.
(1)求 b 的值;
(2)当 c > - 1 时,该函数的图象的顶点的纵坐标的最小值是 1 .
(3)设 ( m , 0 ) 是该函数的图象与 x 轴的一个公共点.当 - 1 < m < 3 时,结合函数的图象,直接写出 a 的取值范围.
如图,已知 P 是 ⊙ O 外一点.用两种不同的方法过点 P 作 ⊙ O 的一条切线.
要求:(1)用直尺和圆规作图;
(2)保留作图的痕迹,写出必要的文字说明.
甲、乙两人沿同一直道从 A 地去 B 地.甲比乙早 1 min 出发,乙的速度是甲的2倍.在整个行程中,甲离 A 地的距离 y 1 (单位: m ) 与时间 x (单位: min ) 之间的函数关系如图所示.
(1)在图中画出乙离 A 地的距离 y 2 (单位: m ) 与时间 x 之间的函数图象;
(2)若甲比乙晚 5 min 到达 B 地,求甲整个行程所用的时间.