如图,在四棱锥中,,,且DB平分,E为PC的中点,, (Ⅰ)证明 (Ⅱ)证明(Ⅲ)求直线BC与平面PBD所成的角的正切值
已知数列{ a n}的各项都是正数,且满足:a0=1,an+1=an·(4-an)(n∈N).证明:an<an+1<2(n∈N).
一个小朋友在一次玩皮球时,偶然发现一个现象:球从某高度落下后,每次都反弹回原高度的,再落下,再反弹回上次高度的,如此反复.假设球从100 cm处落下,那么第10次下落的高度是多少?在第10次落地时共经过多少路程?试用伪代码表示其算法.
已知数列{ a n}的各项都是正数,且满足:a0=1,an+1=an·(4-an)(n∈N).证明:an<an+1<2(n∈N).
已知z是复数,z+2i、均为实数(i为虚数单位),且复数(z+ai)2在复平面上对应的点在第一象限,求实数a的取值范围.
已知关于x的方程x2-(6+i)x+9+ai="0" (a∈R)有实数根b.(1)求实数a,b的值;(2)若复数z满足|-a-bi|-2|z|=0,求z为何值时,|z|有最小值,并求出|z|的最小值.