已知函数,,(其中),其部分图象如图所示。(1)求的解析式;(2)求函数在区间上的最大值及相应的值。
已知函数.(1)若,求函数的极值;(2)若对任意的,都有成立,求的取值范围.
抛物线上一点到其焦点的距离为5.(1)求与的值; (2)若直线与抛物线相交于、两点,、分别是该抛物线在、两点处的切线,、分别是、与该抛物线的准线交点,求证:
为了研究化肥对小麦产量的影响,某科学家将一片土地划分成200个的小块,并在100个小块上施用新化肥,留下100个条件大体相当的小块不施用新化肥.下表1和表2分别是施用新化肥和不施用新化肥的小麦产量频数分布表(小麦产量单位:kg)(1)完成下面频率分布直方图;(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计施用化肥和不施用化肥的一小块土地的小麦平均产量;(3)完成下面2×2列联表,并回答能否有99.5%的把握认为“施用新化肥和不施用新化肥的小麦产量有差异”表3:附:
把正方形以边所在直线为轴旋转到正方形,其中分别为的中点.(1)求证:∥平面;(2)求证:平面;(3)求二面角的大小.
在△ABC中,角A、B、C所对的边分别为a、b、c,已知,,.(1)求c及△ABC的面积S;(2)求