Rt△ABC与Rt△FED是两块全等的含30o、60o角的三角板,按如图(一)所示拼在一起,CB与DE重合.求证:四边形ABFC为平行四边形取BC中点O,将△ABC绕点O顺时针方向旋转到如图(二)中△位置,直线与AB、CF分别相交于P、Q两点,猜想OQ、OP长度的大小关系,并证明你的猜想.在(2)的条件下,指出当旋转角为多少度时,四边形PCQB为菱形(不要求证明).
如图,在△AFC中,AF=AC,B是CF的中点,AH平分∠CAF,作CD⊥AH于D。 (1)证明四边形ABCD是矩形。 (2)若BD交AC于O,证明:OB//AF且OB= AF。 (3)若使四边形ABCD是正方形,需添加一个条件,请直接写出该条件。
如图,在等腰梯形ABCD中,AD//BC,AD="3" cm,BC="7" cm,∠B=60°,P为下底BC上一点(不与B、C重合),连接AP,过P点作PE交DC于E,使得∠APE=∠B. (1)求证:△ABP∽△PCE; (2)求等腰梯形的腰AB的长; (3)在底边BC上是否存在一点P,使得DE:EC=5:3?如果存在,求出BP的长,如果不存在,请说明理由.
如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长(结果保留小数点后一位,参考数据:,).
某汽车销售公司6月份销售,某厂家的汽车,在一定范围内,每辆汽车的售价与销售量有如下关系:若当月仅售出1辆汽车时,则该辆汽车的进价为27万元,每多售出1辆,所有售出的汽车的进价均降低0.1万元/辆;月底厂家根据销售量一次性返利给销信公司,销售10辆以内(含10辆),每辆返利0.5万元;销售量在10辆以上,每辆返利1万元. (1)若该公司当月售出3辆汽车,则每辆汽车的进价为多少万元; (2)如果汽车的售价为28万元/辆,该公司计划当月盈利12万元,那么需要售出多少辆汽车(盈利=销售利润+返利)?
设关于的一元二次方程有两个实数根、,问是否存在k使得成立的情况?