将矩形纸片沿对角线剪开,得和,如图(1-1)所示.将的顶点与点重合,并绕点按逆时针方向旋转,使点、、在同一条直线上,如图(1-2)所示.观察图可知:与BC相等的线段是______,=_______;如图(2),中,于点,以为直角顶点,分别以、为直角边,向外作等腰和等腰,过点作射线的垂线,垂足分别为. 求证:.如图(3),中,于点,以为直角顶点,分别以、为直角边,向外作和,过点作射线的垂线,垂足分别为.若,试探究与之间的数量关系,并说明理由.
如图,线段AB,CD分别是一辆轿车和一辆客车在行驶过程中油箱内的剩余油量y1(升)、y2(升)关于行驶时间x(小时)的函数图象.(1)分别求y1、y2关于x的函数解析式,并写出定义域;(2)如果两车同时从相距300千米的甲、乙两地出发,相向而行,匀速行驶,已知轿车的行驶速度比客车的行驶速度快30千米/小时,且当两车在途中相遇时,它们油箱中所剩余的油量恰好相等,求两车的行驶速度.
(1)我市开展了“寻找雷锋足迹”的活动,某中学为了了解七年级800名学生在“学雷锋活动月”中做好事的情况,随机调查了七年级50名学生在一个月内做好事的次数,并将所得数据绘制成统计图,请根据图中提供的信息解答下列问题:①所调查的七年级50名学生在这个月内做好事次数的平均数是____,众数是_____,极差是 ___②根据样本数据,估计该校七年级800名学生在“学雷锋活动月”中做好事不少于4次的人数.(2)甲口袋有2个相同的小球,它们分别写有数字1和2;乙口袋中装有3个相同的小球,它们分别写有数字3、4和5,从这两个口袋中各随机地取出1个小球.①用“树状图法”或“列表法”表示所有可能出现的结果;②取出的两个小球上所写数字之和是偶数的概率是多少?
如图,已知二次函数y=ax2+bx+3的图象过点A(-1,0),对称轴为过点(1,0)且与y轴平行的直线.(1)求点B的坐标(2)求该二次函数的关系式;(3)结合图象,解答下列问题:①当x取什么值时,该函数的图象在x轴上方?②当-1<x<2时,求函数y的取值范围.
已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.①求证:AD=CN;②若∠BAN=90度,求证:四边形ADCN是矩形.
当x满足不等式时,求方程的解。