甲、乙、丙、丁四位同学进行一次羽毛球单打比赛,要从中选出两位同学打第一场比赛.请用树状图法或列表法,求恰好选中甲、乙两位同学的概率;若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率。
已知在平面直角坐标系中的位置如图所示.(1)分别写出图中点的坐标;(2)画出绕点按顺时针方向旋转;(3)求点旋转到点所经过的路线长(结果保留).
(本题满分8分,每小题4分)(1)计算: (2)解方程组:
甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图(1),测得一根直立于平地,长为80cm的竹竿的影长为60cm;乙组:如图(2),测得学校旗杆的影长为900cm;丙组:如图(3),测得校园景灯(灯罩视为圆柱体,灯杆粗细忽略不计)的灯罩部分影长HQ 为90cm,灯杆被阳光照射到的部分PG长40cm,未被照射到的部分KP长24cm。(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)请根据甲、丙两组得到的信息,求:①灯罩底面半径MK的长; ②灯罩的主视图面积。
已知抛物线m:y=ax2+bx+c(a ≠ 0) 与x轴交于A、B两点(点A在左),与y轴交于点C,顶点为M,抛物线上部分点的横坐标与对应的纵坐标如下表: (1)根据表中的各对对应值,请写出三条与上述抛物线m有关(不能直接出现表中各对对应值)的不同类型的正确结论;(2)若将抛物线m,绕原点O顺时针旋转180°,试写出旋转后抛物线n的解析式,并在坐标系中画出抛物线m、n的草图;(3)若抛物线n的顶点为N,与x轴的交点为E、F(点E、 F分别与点A、B对应),试问四边形NFMB是何种特殊四边形?并说明其理由.
如图,在正方形网格图中建立直角坐标系,一条圆弧经过网格点A、B、C,请在网格中进行下列操作:(1) 请在图中确定该圆弧所在圆心D点的位置,D点坐标为______;(2) 连接AD、CD,求⊙D的半径及扇形ADC的圆心角度数;(3) 若扇形DAC是某一个圆锥的侧面展开图,求该圆锥的底面半径。