小明对所在班级“小书库”进行了分类统计,并制作了如下的统计图:根据上述信息,完成下列问题:图书总册数是 册,a= 册请将条形统计图补充完整数据22、20、18、a、12、14的众数是 ,极差是 ;小明从这些书中任意拿一册来阅读,求他恰好拿到数学书或英语书的概率
小明和小莉在跑道上进行100m短跑比赛,两人从出发点同时起跑,小明到达终点时,小莉离终点还差6m,已知小明和小莉的平均速度分别为x m/s、y m/s.(1)如果两人重新开始比赛,小明从起点向后退6m,两人同时起跑能否同时到达终点?若能,请求出两人到达终点的时间;若不能,请说明谁先到达终点.(2)如果两人想同时到达终点,应如何安排两人起跑位置?请设计两种方案.
如图,OA.OB是⊙O的半径且OA⊥OB,作OA的垂直平分线交⊙O于点C.D,连接CB.AB.求证:∠ABC=2∠CBO.
三角形中有3个角、3条边共6个元素,由其中的已知元素,求出所有未知元素的过程,叫做解三角形.已知△ABC中,AB=,∠B=45°,BC=1+,解△ABC.
某纪念币从2013年11月11日起开始上市,通过市场调查得知该纪念币每1枚的市场价y(单位:元)与上市时间x(单位:天)的数据如下:
(1)根据上表数据,在某一特定时期内,可从下列函数中选取一个恰当的函数描述纪念币的市场价y与上市时间x的变化关系:①y=ax+b(a≠0); ②y=a(x-h)2+k( a≠0); ③y=(a≠0).你可选择的函数的序号是 .(2)利用你选取的函数,求该纪念币上市多少天时市场价最低,最低价格是多少?
在一个不透明的袋子中,放入除颜色外其余都相同的1个白球、2个黑球、3个红球.搅匀后,从中随机摸出2个球.(1)请列出所有可能的结果:(2)求每一种不同结果的概率.