已知 a 为正实数, n 为自然数,抛物线 y = - x 2 + a n 2 与 x 轴正半轴相交于点 A ,设 f n 为该抛物线在点 A 处的切线在 y 轴上的截距. (1)用 a 和 n 表示 f n ; (2)求对所有 n 都有 f n - 1 f n + 1 ≥ n 3 n 3 + 1 成立的 a 的最小值; (3)当 0 < a < 1 时,比较 ∑ k = 1 n 1 f k - f 2 k 与 27 4 · f 1 - f n f 0 - f 1 的大小,并说明理由.
已知曲线C的参数方程为(α∈R,α为参数).当极坐标系的极点与直角坐标系的原点重合,且极轴在x轴的正半轴上时,曲线D的极坐标力程为ρsin(θ+)=a. (I)、试将曲线C的方程化为普通方程,曲线D的方程化为直角坐标方程; (II)、试确定实数a的取值范围,使曲线C与曲线D有公共点.
已知a、b∈R,若M=\o(\s\up7(-1b所对应的变换TM把直线l:3x-2y=1变换为自身,试求实数a、b的值.
已知函数 (1)、若函数在处的切线方程为,求的值; (2)、若函数在为增函数,求的取值范围; (3)、讨论方程解的个数,并说明理由。
已知数列首项,公比为的等比数列,又,常数,数列满足, (1)、求证为等差数列; (2)、若是递减数列,求的最小值;(参考数据:) (3)、是否存在正整数,使重新排列后成等比数列,若存在,求的值,若不存在,说明理由。
给定椭圆C:,称圆心在原点O、半径为的圆是椭圆C的“伴椭圆” ,若椭圆C的一个焦点为,其短轴上的一个端点到距离为; (1)、求椭圆C的方程及其“伴椭圆”的方程; (2)、若倾斜角为的直线与椭圆C只有一个公共点,且与椭圆C的“伴椭圆”相交于M、N两点,求弦MN的长。 (3)、若点P是椭圆C“伴椭圆”上一动点,过点P作直线,使得与椭圆C都只有一个公共点,求证:。