国民体质监测中心等机构开展了青少年形体测评.专家组随机抽查了某市若干名初中学生坐姿、站姿、走姿的好坏情况.我们对专家的测评数据作了适当处理(如果一个学生有一种以上不良姿势,我们以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:请将两幅统计图补充完整;在这次形体测评中,一共抽查了 名学生,如果全市有10万名初中生,那么全市初中生中,三姿良好的学生约有 人;根据统计结果,请你简单谈谈自己的看法.
(年云南省曲靖市)如图,在平面直角坐标系xOy中,直线l⊥y轴于点B(0,﹣2),A为OB的中点,以A为顶点的抛物线与x轴交于C、D两点,且CD=4,点P为抛物线上的一个动点,以P为圆心,PO为半径画圆.(1)求抛物线的解析式;(2)若⊙P与y轴的另一交点为E,且OE=2,求点P的坐标;(3)判断直线l与⊙P的位置关系,并说明理由.
(年贵州省遵义市)如图,抛物线(≠0)与轴交于A(-4,0),B(2,0),与轴交与点C(0,2). (1)求抛物线的解析式; (2)若点D为该抛物线上的一个动点,且在直线AC上方,当以A,C,D为顶点的三角形面积最大时,求点D的坐标及此时三角形的面积;(解题用图见答题卡) (3)以AB为直径作⊙M,直线经过点E(-1,-5),并且与⊙M相切,求该直线的解析式.(解题用图见答题卡)
(年贵州省铜仁市)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.
(年蒙自市初中学业水平第一次模拟测试)如图(1),在平面直角坐标系中,抛物线与轴交于,与y轴交于,顶点为,对称轴为. (1)抛物线的解析式是 ; (2)如图(2),点是上的一个动点,是关于的对称点,连结,过作∥交轴于.设,求关于的函数关系式,并求的最大值; (3)在(1)中的抛物线上是否存在点,使成为以为直角边的直角三角形?若存在,求出的坐标;若不存在,请说明理由.