已知抛物线=++-4.(1)当=2时,求出此抛物线的顶点坐标;(2)求证:无论为什么实数,抛物线都与轴有交点,且经过轴上的一定点;(3)已知抛物线与轴交于A(1,0)、B(2,0)两点(A在B的左边),|1|<|2|,与轴交于C点,且S△ABC=15.问:过A,B,C三点的圆与该抛物线是否有第四个交点?试说明理由.如果有,求出其坐标.
已知:如图①,在中,,,,点由出发沿方向向点匀速运动,速度为1cm/s;点由出发沿方向向点匀 速运动,速度为2cm/s;连接.若设运动的时间为(),解答下列问题: (1)当为何值时,? (2)设的面积为(),求与之间的函数关系式; (3)是否存在某一时刻,使线段恰好把的周长和面积同时平分?若存在,求出此时的值;若不存在,说明理由; (4)如图②,连接,并把沿翻折,得到四边形,那么是否存在某一时刻,使四边形为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.
在△ABD中,E、H分别是AB、AD的中点,则EH∥BD, 同理GH∥AC,如图,梯形ABCD中,AD//BC,AB=CD,对角线AC、BD交于点O,ACBD,E、F、G、H分别为AB、BC、CD、DA的中点. (1)求证:四边形EFGH为正方形; (2)若AD=4,BC=6,求四边形EFGH的面积.
在△ABD中,E、H分别是AB、AD的中点, 则EH∥BD, 同理GH∥AC,如图,梯形ABCD中,AD//BC,AB=CD,对角线AC、BD交于点O,ACBD,E、F、G、H分别为AB、BC、CD、DA的中点. (1)求证:四边形EFGH为正方形; (2)若AD=4,BC=6,求四边形EFGH的面积.
如图,DB∥AC,且DB=AC,E是AC的中点, (1)求证:BC=DE; (2)连结AD、BE,若要使四边形DBEA是矩形,则给△ABC添加一个什么条件,为什么? (3)在(2)的条件下,若要使四边形DBEA是正方形,则∠C=0.
如图:已知在中,AD平分∠BAC,为边的中点,过点作,垂足分别为。 (1)求证:; (2)若,求证:四边形是正方形。