在-2,-3,4这三个数中任选2个数分别作为点P的横坐标和纵坐标.(1)可得到的点的个数为 ;(2)求过P点的正比例函数图象经过第二、四象限的概率(用树形图或列表法求解);(3)过点P的正比例函数中,函数随自变量的增大而增大的概率为 .
如图,已知∠ACB=∠CBD=90°,AC=b,CB=a,当BD与a,b之间满足怎样的关系时,△ACB∽△CBD?
如图,在⊙O中,半径OA垂直弦于点D.若∠ACB=33°,则∠OBC的大小为度.
如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的大小为.
某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价25元/件时,每天的销售量是250件;销售单价每上涨1元,每天的销售量就减少10件. (1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式. (2)求销售单价为多少元时,该文具每天的销售利润最大? (3)商场的营销部结合上述情况,提出了A,B两种营销方案:方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元.请比较哪种方案的最大利润更高,并说明理由.
如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°. (1)求∠ABC的度数; (2)求证:AE是⊙O的切线; (3)当BC=4时,求劣弧AC的长.