如图1,二次函数y=ax2+bx+c(a≠0)的图像与x轴交于点A、点B,与y轴交于点C,且A、B两点的坐标分别是(4,0)、(0,-2),tan∠BCO=(1)求抛物线解析式;(2)点M为抛物线上一点,若以MB为直径的圆与直线BC相切于点B,求点M的坐标;(3) 如图2,若点P是抛物线上的动点,点Q是直线y=-x的动点,是否存在以点P、Q、C、O为顶点且以OC为一边的四边形是直角梯形;如果存在,请求出点P的坐标,如果不存在,请说明理由.
小锋家有一块四边形形状的空地(如图,四边形ABCD),其中AD∥BC,BC=1.6m,AD=5.5m,CD=5.2m,∠C=90°,∠A=53°.小锋的爸爸想买一辆长4.9m,宽1.9m的汽车停放在这块空地上,让小锋算算是否可行. 小锋设计了两种方案,如图1和图2所示. (1)请你通过计算说明小锋的两种设计方案是否合理; (2)请你利用图3再设计一种有别于小锋的可行性方案,并说明理由. (参考数据:sin53°=0.8,cos53°=0.6,tan53°=)
(1)如图1,已知△ABC三个顶点的坐标分别为A(1,4)、B(4,1)、C(4,4),若双曲线y=(x>0)与△ABC有公共点,则k的取值范围是 ; (2)把图1中的△ABC沿直线AB翻折后得到△ABC1,若双曲线y=(x>0)与△ABC1有公共点,求m的取值范围; 小明借助一元二次方程根的判断式圆满地解决了这个问题,小芳借助二次函数模型也圆满地解决了这个问题.请你先在图2中画出△ABC1,再写出自己的解答过程. (3)如图3,已知点A为(1,2),点B为(4,1),若双曲线y=(x>0)与线段AB有公共点,则n的取值范围是 .
(1)已知一元二次方程x2-4x+m=0有唯一实数根,求的值; (2)小明是这样完成“作∠MON的平分线”这项作业的: “如图,①以O为圆心,任意长为半径画弧,分别交OM,ON于点A,B;②分别作线段OA,OB的垂直平分线l1,l2(垂足分别记为C,D),记l1与l2的交点为P;③作射线OP,则射线OP为∠MON的平分线.” 你认为小明的作法正确吗?如果正确,请你给证明,如果不正确,请指出错在哪里.
如图,AB,CD分别是⊙O的弦和直径,AB⊥CD于点E,若CD=10,AB=8,则sin∠ACD的值为()
为了创建全国卫生城,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送.若两车合作,各运12趟才能完成,需支付运费共4800元;若甲、乙两车单独运完此堆垃圾,则乙车所运趟数是甲车的2倍;已知乙车每趟运费比甲车少200元. (1)分别求出甲、乙两车每趟的运费; (2)若单独租用甲车运完此堆垃圾,需运多少趟; (3)若同时租用甲、乙两车,则甲车运x趟,乙车运y趟,才能运完此堆垃圾,其中为x,y均为正整数. ①当x=10时,y= ;当y=10时,x= ; ②求y与x的函数关系式. 探究:在(3)的条件下,设总运费为w(元). ①求w与x的函数关系式,直接写出w的最小值; ②当x≥10且y≥10时,甲车每趟的运费打7折,乙车每趟的运费打9折,直接写出w的最小值.