如图1,抛物线与x轴交于B(3,0) 、C(8.0)两点,抛物线另有一点A在第一象限内,连接AO、AC,且AO=AC.求抛物线的解析式;将△OAC绕x轴旋转一周,求所得旋转体的表面积;如图2,将△OAC沿x轴翻折后得△ODC,设垂直于x轴的直线l:x=n与(1)中所求的抛物线交于点M,与CD交于点N,若直线l 沿x轴方向左右平移,且交点M始终位于抛物线上A、C两点之间时,试探究:当n为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.
已知:x2+2x=3,求代数式(x﹣3)2﹣(2x+1)(2x﹣1)﹣7的值.
如图,A、B两村在一条小河的同一侧,要在河边建一水厂向两村供水. (1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置? (2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置?请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹.
解方程:.
分解因式: (1)﹣2m2+8mn﹣8n2 (2)a2(x﹣1)+b2(1﹣x)
先化简,再求值:,其中x是不等式组的整数解.