如图,平面直角坐标系中,四边形OABC为菱形,点A在x轴的正半轴上,BC与y轴交于点D,点C的坐标为(-3,4)。点A的坐标为 ▲ ;求过点A、O、C的抛物线解析式,并求它的顶点坐标;在直线AB上是否存在点P,使得以点A、O、P为顶点的三角形与△COD相似。若存在,求出点P的坐标;若不存在,请说明理由。
如图,已知△ABC的三个顶点的坐标分别 为A(-6,0)、B(-2,3)、C(-1,0). (1)将△ABC绕坐标原点O逆时针旋转90°.画出对应的△A′B′C′图形; (2)若四边形A′B′C′D′为平行四边形,请直接写出第四个顶点D′的坐标.
先化简,再求值:,其中a=+1,b=-1.
已知二次函数的图象经过点(0,3),顶点坐标为(1,4), (1)求这个二次函数的解析式; (2)求图象与x轴交点A、B两点的坐标; (3)图象与y轴交点为点C,求三角形ABC的面积.
【改编】如图,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5). (1)求证:△ACD∽△BAC; (2)求DC的长; (3)设四边形AFEC的面积为y,求y关于t的函数关系式,并求出y的最小值.
【改编】已知平行四边形ABCD中,E、F分别是BC、CD的中点,AE、AF分别交BD于M、N. (1)求证:BM=MN=ND. (2)若△AMN的面积为1,则五边形CEMNF的面积是多少?