红星中学开展了“绿化家乡,植树造林 ”活动,并对该校的甲、乙、丙、丁四个班级种树情况进行了考察,并将收集的数据绘制了图①和图②两幅尚不完整的统计图.请根据图中提供的信息,完成下列问题: 这四个班共种__▲______棵树.请你补全两幅统计图.若四个班种树的平均成活率是90%,全校共种树2000棵,请你估计这些树中,成活的树约有多少棵?
在直角梯形中, , 高(如图1). 动点同时从点出发, 点沿运动到点停止, 点沿运动到点停止,两点运动时的速度都是1cm/s,而当点到达点时,点正好到达点. 设同时从点出发,经过的时间为(s)时, 的面积为(如图2). 分别以为横、纵坐标建立直角坐标系, 已知点在边上从到运动时, 与的函数图象是图3中的线段. (图1) (图2)(图3) (1)分别求出梯形中的长度; (2)分别写出点在边上和边上运动时, 与的函数关系式(注明自变量的取值范围), 并在图3中补全整个运动中关于的函数关系的大致图象. (3)问:是否存在这样的t,使PQ将梯形ABCD的面积恰好分成1:6的两部分?若存在,求出这样的t的值;若不存在,请说明理由.
把两个直角三角形如图(1)放置,使∠ACB与∠DCE重合,AB与DE相交于点O,其中∠DCE=90°,∠BAC=45°,AB=6cm,CE="5cm," CD=10cm. (1)图1中线段AO的长= cm;DO=cm 图1 (2)如图2,把△DCE绕着点C逆时针旋转α度(0°<α<90°)得△D1CE1,D1C与AB相交于点F,若△BCE1恰好是以BC为底边的等腰三角形,求线段AF的长. 图2
老王是新农村建设中涌现出的“养殖专业户”.他准备购置80只相同规格的网箱,养殖A、B两种淡水鱼(两种鱼不能混养).计划用于养鱼的总投资不少于7万元,但不超过7.2万元,其中购置网箱等基础建设需要1.2万元.设他用x只网箱养殖A种淡水鱼,目前平均每只网箱养殖A、B两种淡水鱼所需投入及产出情况如下表:
(利润=收入-支出.收入指成品鱼收益,支出包括基础建设投入、鱼苗投资及饲料支出) (1)按目前市场行情,老王养殖A、B两种淡水鱼获得利润最多是多少万元? (2)基础建设投入、鱼苗投资、饲料支出及产量不变,但当老王的鱼上市时,A种鱼价格上涨a%,B种鱼价格下降20%,使老王养鱼实际获得利润5.68万元.求a的值.
如图,直线AB交x轴于点B,交y轴于点A(0,4),直线DM⊥x轴正半轴于点M,交线段AB于点C,DM=6,连接DA,∠DAC=90°,AD:AB=1:2. (1)求点D的坐标; (2)求经过O、D、B三点的抛物线的函数关系式.
某中学学生为了解该校学生喜欢球类活动的情况,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的球类),并将调查的结果绘制成如下的两幅不完整的统计图. 请根据图中提供的信息,解答下面的问题: (1)参加调查的学生共有人,在扇形图中,表示“其他球类”的扇形的圆心角为度; (2)将条形图补充完整; (3)若该校有2000名学生,则估计喜欢“篮球”的学生共有人.