在平面直角坐标系中,已知抛物线与轴交于点(-1,0)、(3,0),与轴的正半轴交于点,顶点为.求抛物线解析式及顶点的坐标;如图,过点E作BC平行线,交轴于点F,在不添加线和字母情况下,图中面积相等的三角形有: .将抛物线向下平移,与轴交于点M、N,与轴的正半轴交于点P,顶点为Q.在四边形MNQP中满足S△NPQ = S△MNP,求此时直线PN的解析式
识图理解:请认真观察如图给出的未来一周某市的每天的最高气温和最低气温,直接回答后面提出的问题:(1)这一周该市的最高气温和最低气温分别是多少?(2)这一周中,星期几的温差最大?是多少?
人在运动时的心跳速率和人的年龄有关,如果用表示一个人的年龄,表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么有=0.8(200-),请问这个45岁的人某时心跳次数达到了122次,他有危险吗?为什么?
.观察=-10,=4,=1的规律.求:的值.
如图所示,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点c.(1)求A、B、C三点的坐标.(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积. (3)在x轴上方的抛物线上是否存在一点M,过M作MG⊥x轴于点G,使以A、M、G三点为顶点的三角形与△PCA相似.若存在,请求出M点的坐标;否则,请说明理由。
如图,四边形ABCD为矩形,AB=4,AD=3,动点M从D点出发,以1个单位/秒的速度沿DA向终点A运动,同时动点N从A点出发,以2个单位/秒的速度沿AB向终点B运动.当其中一点到达终点时,运动结束.过点N作NP⊥AB,交AC于点P1连结MP.已知动点运动了x秒.(1)请直接写出PN的长;(用含x的代数式表示)(2)试求△MPA的面积S与时间x秒的函数关系式,写出自变量x的取值范围,并求出S的最大值;