在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/s的速度移动,点Q沿DA边从点D开始向点A以1cm/s的速度移动,P、Q同时出发,用t(s)表示移动时间(0≤t≤6)当t为何值时,△QAP为等腰直角三角形?当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?
如图1,抛物线(),与轴的交于A、B两点(点A在点B的右侧),与轴的正半轴交于点C,顶点为D.(1)求顶点D的坐标(用含的代数式表示);(2)若以AD为直径的圆经过点C.①求抛物线的解析式;②如图2,点E是y轴负半轴上的一点,连结BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.
图1为一锐角是30°的直角三角尺,其边框为透明塑料制成(内、外直角三角形对应边互相平行且三处所示宽度相等).操作:将三角尺移向直径为4cm的⊙O,它的内Rt△ABC的斜边AB恰好等于⊙O的直径,它的外Rt△A′B′C′的直角边A′C′ 恰好与⊙O相切(如图2).思考:(1)求直角三角尺边框的宽;(2)求∠BB′C′+∠CC′B′的度数;(3)求边B′C′的长.
2015年4月25日14时11分尼泊尔发生了8.1级大地震.山坡上有一棵与水平面垂直的大树,大地震过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面(如图所示).已知山坡的坡角∠AEF=23°,量得树干的倾斜角为∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=4米.(1)求∠DAC的度数;(2)求这棵大树原来的高度是多少米?(结果精确到个位,参考数据:,,)
2015“两相和”杯群星演唱会在我市体育馆进行,市文化局、广电局在策划本次活动,在与单位协商团购票时推出两种方案.设购买门票数为x(张),总费用为y(元).方案一:若单位赞助广告费8000元,则该单位所购门票的价格为每张50元;(总费用=广告赞助费+门票费)方案二:直接购买门票方式如图所示.解答下列问题:(1)方案一中,y与x的函数关系式为 ;方案二中,当0≤x≤100时,y与x的函数关系式为 ,当x>100时,y与x的函数关系式为 ;(2)甲、乙两单位分别采用方案一、方案二购买本场演唱会门票共700张,花去总费用计56000元,求甲、乙两单位各购买门票多少张?
如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:(1)求证:△ABE≌△ACD;(2)求证:四边形BCDE是矩形.