有两个可以自由转动的均匀转盘A、B,分别被分成4等份、3等份,并在每份内均标有数字,如图所示.王扬和刘菲同学用这两个转盘做游戏,游戏规则如下:①分别转动转盘A与B;②两个转盘停止后,将两个指针所指份内的数字相加(如果指针恰好停在等分线上,那么重转一次,直到指针指向某一份为止).③如果和为0,王扬获胜;否则刘非获胜。用列表法(或树状图)求王扬获胜的概率;你认为这个游戏对双方公平吗?请说明理由.
在Rt△ABC中,∠ACB=90,AC=BC,CD⊥AB于点D,点E为AC边上一点,联结BE交CD于点F,过点E作EG⊥BE交AB于点G,如图1,当点E为AC中点时,线段EF与EG的数量关系是;如图2,当,探究线段EF与EG的数量关系并且证明;如图3,当,线段EF与EG的数量关系是.
在平面直角坐标系xOy中,抛物线与直线y=x-1交于A(-1,a)、B(b,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)求△ABC的面积; (3)点是x轴上的一个动点.过点P作x轴的垂线交直线AB于点M,交抛物线于点N.当点M位于点N的上方时,直接写出t的取值范围.
小明喜欢研究问题,他将一把三角板的直角顶点放在平面直角坐标系的原点处,两条直角边与抛物线交于、两点. (1)如左图,当时,则=;(2)对同一条抛物线,当小明将三角板绕点旋转到如右图所示的位置时,过点作轴于点,测得,求出此时点的坐标;(3)对于同一条抛物线,当小明将三角板绕点旋转任意角度时,他惊奇地发现,若三角板的两条直角边与抛物线有交点,则线段总经过一个定点,请直接写出该定点的坐标.
某工厂设计了一款产品,成本为每件20元.投放市场进行试销,得到如下数据:
(1)若日销售量(件)是售价(元∕件)的一次函数,求这个一次函数的解析式;(2)设这个工厂试销该产品每天获得的利润为W(元),当售价定为每件多少元时,工厂每天获得的利润最大?最大利润是多少元?
如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,以AB上一点O为圆心,AD为弦作⊙O. (1)求证:BC为⊙O的切线; (2)若AC= 6,tanB=,求⊙O的半径.