如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,请按要求完成下列各题画线段AD// BC且使AD =BC连接CD,且四边形ABCD为格点四边形:△ACD为____ 三角形,四边形ABCD的面积为___AC与DB相交于点O,△ABO的面积为____.
在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).
请解答下列问题:
(1)请补全条形统计图和扇形统计图;
(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?
(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?
(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?
如图,一次函数的图象分别与轴,轴相交于点,,与反比例函数的图象相交于点,.
(1)求一次函数和反比例函数的表达式;
(2)当为何值时,;
(3)当为何值时,,请直接写出的取值范围.
如图,抛物线与轴交于、两点(点在点的左侧),与轴交于点,连接、.点沿以每秒1个单位长度的速度由点向点运动,同时,点沿以每秒2个单位长度的速度由点向点运动,当一个点停止运动时,另一个点也随之停止运动,连接.过点作轴,与抛物线交于点,与交于点,连接,与交于点.设点的运动时间为秒.
(1)求直线的函数表达式;
(2)①直接写出,两点的坐标(用含的代数式表示,结果需化简)
②在点、运动的过程中,当时,求的值;
(3)试探究在点,运动的过程中,是否存在某一时刻,使得点为的中点?若存在,请直接写出此时的值与点的坐标;若不存在,请说明理由.
综合与实践
背景阅读 早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为的三角形称为,4,型三角形,例如:三边长分别为9,12,15或,,的三角形就是,4,型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.
实践操作 如图1,在矩形纸片中,,.
第一步:如图2,将图1中的矩形纸片沿过点的直线折叠,使点落在上的点处,折痕为,再沿折叠,然后把纸片展平.
第二步:如图3,将图2中的矩形纸片再次折叠,使点与点重合,折痕为,然后展平,隐去.
第三步:如图4,将图3中的矩形纸片沿折叠,得到△,再沿折叠,折痕为,与折痕交于点,然后展平.
问题解决
(1)请在图2中证明四边形是正方形.
(2)请在图4中判断与的数量关系,并加以证明;
(3)请在图4中证明,4,型三角形;
探索发现
(4)在不添加字母的情况下,图4中还有哪些三角形是,4,型三角形?请找出并直接写出它们的名称.
如图,内接于,且为的直径,,与交于点,与过点的的切线交于点.
(1)若,,求的长.
(2)试判断与的数量关系,并说明理由.