如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,请按要求完成下列各题画线段AD// BC且使AD =BC连接CD,且四边形ABCD为格点四边形:△ACD为____ 三角形,四边形ABCD的面积为___AC与DB相交于点O,△ABO的面积为____.
人教版初中数学教科书八年级上册第 35 - 36 页告诉我们作一个三角形与已知三角形全等的方法:
已知: ΔABC .
求作:△ A ' B ' C ' ,使得△ A ' B ' C ' ≅ ΔABC .
作法:如图.
(1)画 B ' C ' = BC ;
(2)分别以点 B ' , C ' 为圆心,线段 AB , AC 长为半径画弧,两弧相交于点 A ' ;
(3)连接线段 A ' B ' , A ' C ' ,则△ A ' B ' C ' 即为所求作的三角形.
请你根据以上材料完成下列问题:
(1)完成下面证明过程(将正确答案填在相应的空上) :
证明:由作图可知,在△ A ' B ' C ' 和 ΔABC 中,
B ' C ' = BC A ' B ' = ( ) A ' C ' = ( )
∴ △ A ' B ' C ' ≅ .
(2)这种作一个三角形与已知三角形全等的方法的依据是 .(填序号)
① AAS
② ASA
③ SAS
④ SSS
先化简,再求值: ( x - 3 ) 2 + ( x + 3 ) ( x - 3 ) + 2 x ( 2 - x ) ,其中 x = - 1 2 .
计算: | - 2 | - 2 sin 45 ° + ( 1 - 3 ) 0 + 2 × 8 .
如图,已知二次函数 y = a x 2 + bx + c 的图象经过点 C ( 2 , - 3 ) ,且与 x 轴交于原点及点 B ( 8 , 0 ) .
(1)求二次函数的表达式;
(2)求顶点 A 的坐标及直线 AB 的表达式;
(3)判断 ΔABO 的形状,试说明理由;
(4)若点 P 为 ⊙ O 上的动点,且 ⊙ O 的半径为 2 2 ,一动点 E 从点 A 出发,以每秒2个单位长度的速度沿线段 AP 匀速运动到点 P ,再以每秒1个单位长度的速度沿线段 PB 匀速运动到点 B 后停止运动,求点 E 的运动时间 t 的最小值.
阅读下面的材料:
如果函数 y = f ( x ) 满足:对于自变量 x 取值范围内的任意 x 1 , x 2 ,
(1)若 x 1 < x 2 ,都有 f ( x 1 ) < f ( x 2 ) ,则称 f ( x ) 是增函数;
(2)若 x 1 < x 2 ,都有 f ( x 1 ) > f ( x 2 ) ,则称 f ( x ) 是减函数.
例题:证明函数 f ( x ) = x 2 ( x > 0 ) 是增函数.
证明:任取 x 1 < x 2 ,且 x 1 > 0 , x 2 > 0 .
则 f ( x 1 ) - f ( x 2 ) = x 1 2 - x 2 2 = ( x 1 + x 2 ) ( x 1 - x 2 ) .
∵ x 1 < x 2 且 x 1 > 0 , x 2 > 0 ,
∴ x 1 + x 2 > 0 , x 1 - x 2 < 0 .
∴ ( x 1 + x 2 ) ( x 1 - x 2 ) < 0 ,即 f ( x 1 ) - f ( x 2 ) < 0 , f ( x 1 ) < f ( x 2 ) .
∴ 函数 f ( x ) = x 2 ( x > 0 ) 是增函数.
根据以上材料解答下列问题:
(1)函数 f ( x ) = 1 x ( x > 0 ) , f (1) = 1 1 = 1 , f (2) = 1 2 , f (3) = , f (4) = ;
(2)猜想 f ( x ) = 1 x ( x > 0 ) 是 函数(填“增”或“减” ) ,并证明你的猜想.