如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,请按要求完成下列各题画线段AD// BC且使AD =BC连接CD,且四边形ABCD为格点四边形:△ACD为____ 三角形,四边形ABCD的面积为___AC与DB相交于点O,△ABO的面积为____.
如图,在四边形ABCD中,DC∥AB,DA⊥AB,AD=4cm,DC=5cm,AB=8cm.如果点P由B点出发沿BC方向向点C匀速运动,同时点Q由A点出发沿AB方向向点B匀速运动,它们的速度均为1cm/s,当P点到达C点时,两点同时停止运动,连接PQ,设运动时间为t s,解答下列问题:(1)当t为何值时,P,Q两点同时停止运动?(2)设△PQB的面积为S,当t为何值时,S取得最大值,并求出最大值;(3)当△PQB为等腰三角形时,求t的值.
如图,已知抛物线经过点A(4,0),B(0,4),C(6,6).(1)求抛物线的表达式;(2)证明:四边形AOBC的两条对角线互相垂直;(3)在四边形AOBC的内部能否截出面积最大的▱DEFG?(顶点D,E,F,G分别在线段AO,OB,BC,CA上,且不与四边形AOBC的顶点重合)若能,求出▱DEFG的最大面积,并求出此时点D的坐标;若不能,请说明理由.
阅读下面的材料:如果函数y=f(x)满足:对于自变量x的取值范围内的任意x1,x2,(1)若x1<x2,都有f(x1)<f(x2),则称f(x)是增函数;(2)若x1<x2,都有f(x1)>f(x2),则称f(x)是减函数.例题:证明函数f(x)=(x>0)是减函数.证明:假设x1<x2,且x1>0,x2>0f(x1)﹣f(x2)=﹣==∵x1<x2,且x1>0,x2>0∴x2﹣x1>0,x1x2>0∴>0,即f(x1)﹣f(x2)>0∴f(x1)>f(x2)∴函数f(x)=(x>0)是减函数.根据以上材料,解答下面的问题:(1)函数f(x)=(x>0),f(1)==1,f(2)==.计算:f(3)= ,f(4)= ,猜想f(x)=(x>0)是 函数(填“增”或“减”);(2)请仿照材料中的例题证明你的猜想.
如图,AC是▱ABCD的一条对角线,过AC中点O的直线分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)当EF与AC满足什么条件时,四边形AFCE是菱形?并说明理由.
如图,要测量A点到河岸BC的距离,在B点测得A点在B点的北偏东30°方向上,在C点测得A点在C点的北偏西45°方向上,又测得BC=150m.求A点到河岸BC的距离.(结果保留整数)(参考数据:≈1.41,≈1.73)