如图,已知:等边三角形的边长为6,点、分别在边、上,且. 点从点开始以每秒1个单位长的速度沿射线方向运动,设点运动的时间为秒. 当时,直线与过点且平行于的直线相交于点,的延长线与的延长线相交于点,与相交于点用的代数式表示;设△的面积为,写出与的函数关系式;当为何值时,点和点是线段的三等分点?
如图,在平面直角坐标系中,以点M(0,)为圆心,作⊙M交x轴于A、B两点,交y轴于C、D两点,连结AM并延长交⊙M于点P,连结PC交x轴于点E,连结DB,∠BDC=30°.(1)求弦AB的长;(2)求直线PC的函数解析式;(3)连结AC,求△ACP的面积.
已知一元二次方程有两个实数根.(1)求的取值范围;(2)如果是符合条件的最大整数,且一元二次方程与有一个相同的根,求此时的值.
美化城市,改善人们的居住环境已成为城市建设的一项重要内容,南沙区近几年来,通过拆迁旧房,植草,栽树,修建公园等措施,使城区绿化面积不断增加(如图所示)(1)根据图中所提供的信息,回答下列问题:2011年的绿化面积为 公顷,比2010年增加了 公顷。(2)为满足城市发展的需要,计划到2013年使城区绿化地总面积达到72.6公顷,试求这两年(2011~2013)绿地面积的年平均增长率。
如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,.(1)求的度数;(2)求证:AE是⊙O的切线。
△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.(1)将△ABC绕点C顺时针旋转90°得到△,画出△. 并求AA1的长度(2)画出△ABC关于原点O的对称图形△,并写出△各顶点的坐标;