如图1,若四边形ABCD、四边形CFED都是正方形,显然图中有AG=CE,AG⊥CE.当正方形GFED绕D旋转到如图2的位置时,AG=CE, AG⊥CH是否成立?若成立,请给出证明;若不成立,请说明理由.当正方形GFED绕D旋转到如图3的位置时,延长CE交AG于H,交AD于M.当AD=4,DG=时,求CH的长。
如图,在 Rt Δ ABC 中, ∠ ACB = 90 ° , ∠ A = 60 ° ,点 D 为 AB 的中点,连接 CD ,将线段 CD 绕点 D 顺时针旋转 α ( 60 ° < α < 120 ° ) 得到线段 ED ,且 ED 交线段 BC 于点 G , ∠ CDE 的平分线 DM 交 BC 于点 H .
(1)如图1,若 α = 90 ° ,则线段 ED 与 BD 的数量关系是 , GD CD = ;
(2)如图2,在(1)的条件下,过点 C 作 CF / / DE 交 DM 于点 F ,连接 EF , BE .
①试判断四边形 CDEF 的形状,并说明理由;
②求证: BE FH = 3 3 ;
(3)如图3,若 AC = 2 , tan ( α - 60 ° ) = m ,过点 C 作 CF / / DE 交 DM 于点 F ,连接 EF , BE ,请直接写出 BE FH 的值(用含 m 的式子表示).
某镇为创建特色小镇,助力乡村振兴,决定在辖区的一条河上修建一座步行观光桥.如图,该河旁有一座小山,山高 BC = 80 m ,坡面 AB 的坡度 i = 1 : 0 . 7 (注:坡度 i 是指坡面的铅直高度与水平宽度的比),点 C 、 A 与河岸 E 、 F 在同一水平线上,从山顶 B 处测得河岸 E 和对岸 F 的俯角分别为 ∠ DBE = 45 ° , ∠ DBF = 31 ° .
(1)求山脚 A 到河岸 E 的距离;
(2)若在此处建桥,试求河宽 EF 的长度.(结果精确到 0 . 1 m )
(参考数据: sin 31 ° ≈ 0 . 52 , cos 31 ° ≈ 0 . 86 , tan 31 ° ≈ 0 . 60 )
星期天,小明与妈妈到离家 16 km 的洞庭湖博物馆参观.小明从家骑自行车先走, 1 h 后妈妈开车从家出发,沿相同路线前往博物馆,结果他们同时到达.已知妈妈开车的平均速度是小明骑自行车平均速度的4倍,求妈妈开车的平均速度.
国务院教育督导委员会办公室印发的《关于组织责任督学进行“五项管理”督导的通知》指出,要加强中小学生作业、睡眠、手机、读物、体质管理.某校数学社团成员采用随机抽样的方法,抽取了八年级部分学生,对他们一周内平均每天的睡眠时间 t (单位: h ) 进行了调查,将数据整理后得到下列不完整的统计图表:
组别
睡眠时间分组
频数
频率
A
t < 6
4
0.08
B
6 ⩽ t < 7
8
0.16
C
7 ⩽ t < 8
10
a
D
8 ⩽ t < 9
21
0.42
E
t ⩾ 9
b
0.14
请根据图表信息回答下列问题:
(1)频数分布表中, a = , b = ;
(2)扇形统计图中, C 组所在扇形的圆心角的度数是 ° ;
(3)请估算该校600名八年级学生中睡眠不足7小时的人数;
(4)研究表明,初中生每天睡眠时长低于7小时,会严重影响学习效率.请你根据以上调查统计结果,向学校提出一条合理化的建议.
如图,已知反比例函数 y = k x ( k ≠ 0 ) 与正比例函数 y = 2 x 的图象交于 A ( 1 , m ) , B 两点.
(1)求该反比例函数的表达式;
(2)若点 C 在 x 轴上,且 ΔBOC 的面积为3,求点 C 的坐标.