计算:.
解下列不等式(组),并将其解集在数轴上表示出来。 (1)<+1(2)
(1)已知线段a,h,用直尺和圆规作等腰三角形ABC,底边BC=a,BC边上的高为h └─────┘a└──────┘h (2)如图,已知△ABC,请作出△ABC关于X轴对称的图形.并写出A、B、C 关于x轴对称的点坐标。
在边长为6的菱形ABCD中,动点M从点A出发,沿A→B→C向终点C运动,连接DM交AC于点N. (1)如图1,当点M在AB边上时,连接BN ①试说明:; ②若∠ABC=60°,AM=4,求点M到AD的距离. (2)如图2,若∠ABC=90°,记点M运动所经过的路程为x(6≤x≤12).试问:x为何值时,△ADN为等腰三角形.
如图所示,四边形OABC是矩形,点D在OC边上,以AD为折痕,将△OAD向上翻折,点O恰好落在BC边上的点E处,若△ECD的周长为2,△EBA的周长为6. (1)矩形OABC的周长为; (2)若A点坐标为,求线段AE所在直线的解析式.
如图,在等腰直角三角板ABC中,斜边BC为2个单位长度,现把这块三角板在平面直角坐标系xOy中滑动,并使B、C两点始终分别位于y轴、x轴的正半轴上,直角顶点A与原点O位于BC两侧. (1)取BC中点D,问OD+DA的长度是否发生改变,若会,说明理由;若不会,求出OD+DA长度; (2)你认为OA的长度是否会发生变化?若变化,那么OA最长是多少?OA最长时四边形OBAC是怎样的四边形?并说明理由; (3)填空:当OA最长时A的坐标是(,),直线OA的解析式是.