如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.求抛物线的解析式若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标P是抛物线上的第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.
某中学开展歌咏比赛,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛的成绩(满分为100分)如图所示. (1)根据图示填写下表;
(2)计算两班复赛成绩的方差,并分析哪个班级的复赛成绩稳定.
某商场销售一批衬衫,平均每天可售出20件,每件盈利44元.为了扩大销售,增加盈利,商场采取降价措施.假设在一定范围内,衬衫单价降1元,商场平均每天可多售出5件.如果商场通过销售这批衬衫每天盈利1600元,那么衬衫的单价应降多少元?
一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球.(1)请用画树状图或列表的方法列出所有可能出现的结果;(2)求两次都摸到白球的概率.
操作题:如图,△ABC内接于⊙O,AB=AC,P是⊙O上一点. (1)请你只用无刻度的直尺,分别画出图①和图②中∠P的平分线; (2)结合图②,说明你这样画的理由.
解下列方程 (1)(x-2)2=3(x-2); (2)(t-2)2+(t+2)2=10.