如图,AB为⊙O的直径,点C在⊙O上,过点C作⊙O的切线交AB的延长线于点D,已知∠D=30°求∠A的度数;若点F在⊙O上,CF⊥AB,垂足为E,CF=,求图中阴影部分的面积.
如图,有一段斜坡长为10米,坡角,为方便残疾人的轮椅车通行,现准备把坡角降为5°. (1)求坡高; (2)求斜坡新起点与原起点的距离(精确到0.1米).
如图,已知△ABC中CE⊥AB于E,BF⊥AC于F, (1)求证:△AFE∽△ABC; (2)若∠A=60°时 ,求△AFE与△ABC面积之比.
已知抛物线, (1)用配方法确定它的顶点坐标、对称轴; (2)取何值时,随增大而减小? (3)取何值时,抛物线在轴上方?
在△ABC中,AB=AC=5,BC=6,求cosB、sinA.
如图,已知O是坐标原点,B、C两点的坐标分别为(3,–1)、(2,1) . (1)以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形; (2)分别写出B、C两点的对应点B′、C′的坐标;