若数列的前项和为:;(Ⅰ) 求数列的通项公式;(Ⅱ) 设数列的前项和为,是否存在实数,使得对一切正整数都成立?若存在,求出的最小值,若不存在,请说明理由.
已知函数在与处都取得极值。 (1)求函数的解析式;(2)求函数在区间[-2,2]的最大值与最小值
求证: +>2+。
已知,写出用表示的关系等式,并证明这个关系等式.
一个袋中装有四个形状大小完全相同的球,球的编号分别为,(Ⅰ)从袋中随机取出两个球,求取出的球的编号之和不大于的概率;(Ⅱ)先从袋中随机取一个球,该球的编号为,将球放回袋中,然后再从袋中随机取一个球,该球的编号为,求的概率。
如图,在直三棱柱中,,.棱上有两个动点E,F,且EF = a (a为常数).(Ⅰ)在平面ABC内确定一条直线,使该直线与直线CE垂直; (Ⅱ)判断三棱锥B—CEF的体积是否为定值.若是定值,求出这个三棱锥的体积;若不是定值,说明理由.