某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元。(1).当一次订购量为多少个时,零件的实际出厂单价恰降为51元;(2).设一次订购量为个,零件的实际出厂单价为元,写出函数的解析式;(3).当销售商一次订购500个零件时,该厂获得的利润是多少元?如果一次订购1000个零件时,该厂获得的利润又是多少元?
如图,在直三棱柱ADE—BCF中,面ABFE和面ABCD都是正方形,M为AB的中点,O为DF的中点. 证明:(1)OM∥平面BCF; (2)平面MDF⊥平面EFCD.
(本题12分)已知定义在区间上的函数的图像关于直线对称,当时,. (1)求,的值; (2)求的解析式; (3)如果关于的方程有解,那么将方程在取某一确定值时所求得的所有的解的和记为,求的所有可能取值及对应的的取值范围.
(本题12分)已知圆,是轴上的动点,分别切圆于两点. (1)若点的坐标为,求切线的方程; (2)求四边形的面积的最小值.
(本题12分)已知函数的图象在轴右侧的第一个最高点为,在轴右侧与轴的第一个交点为. (1)求函数的解析式; (2)已知方程在区间上有解,求实数的取值范围.
(本题12分)在中,已知,且边的中点在轴上,边的中点在轴上,求 (1)顶点的坐标; (2)的面积.