某公司2011年利润为100万元,因市场竞争,若不开发新项目,预测从2012年起每年利润比上一年减少4万元.2012年初,该公司一次性投入90万元开发新项目,预测在未扣除开发所投入资金的情况下,第n年(n为正整数,2012年为第一年)的利润为万元.(1)设从2012年起的前n年,该公司不开发新项目的累计利润为万元,开发新项目的累计利润为万元(须扣除开发所投入资金),求,的表达式.(2)依上述预测,该公司从第几年开始,开发新项目的累计利润超过不开发新项目的累计利润?
(本小题12分)已知抛物线,焦点为,顶点为,点在抛物线上移动,是的中点。 (1)求点的轨迹方程; (2)若倾斜角为60°且过点的直线交的轨迹于两点,求弦长。
.(本小题12分)如图,在四棱锥S—ABCD中,底面ABCD,底面ABCD是平行四边形,,E是SC的中点。 (1)求证:; (2)若SD=2,求二面角E—BD—C的余弦值。
(本小题12分)已知c>0,设p:函数在R上单调递减;q:不等式>1的解集为R,如果“p或q”为真,且“p且q”为假,求c的取值范围。
(本小题10分)已知圆与y轴相切,圆心在直线x-3y=0,且这个圆经过点A(6,1),求该圆的方程。
.已知向量,且,⑴求的取值范围;⑵求证;⑶求函数的取值范围.