在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.如图1,若点P在BC边上,此时PD=0,易证PD,PE,PF与AB满足的数量关系PD+PE+PF=AB;当点P在△ABC内,先在图2中作出图形,并写出PD,PE,PF与AB满足的数量关系,然后证明你的结论当点P在△ABC外,先在图3中作出图形,然后写出PD,PE,PF与AB满足的数量关系.(不用说明理由)
已知关于 x 的一元二次方程 x 2 + cx + a = 0 的两个整数根恰好比方程 x 2 + ax + b = 0 的两个根都大 1 ,求 a + b + c 的值.
设 a , b , c , d 为四个不同的实数,若 a , b 为方程 x 2 - 10 cx - 11 d = 0 的根, c , d 为方程 x 2 - 10 ax - 11 b = 0 的根,求 a + b + c + d 的值.
若关于 x 的方程 x 2 - ( a - 3 ) x + a - 2 = 0 有两个不相等的整数根,求 a 的值.
定义:如果一元二次方程 a x 2 + bx + c = 0 ( a ≠ 0 ) 满足 a + b + c = 0 ,那么我们称这个方程为“凤凰方程”,已知 a x 2 + bx + c = 0 ( a ≠ 0 ) 是“凤凰方程”,且有两个相等的实数根,求 a , b , c 之间的关系.
已知关于 x 的一元二次方程 x 2 - ( 2 k + 1 ) x + k 2 + k = 0 .
(1)求证:无论 k 取何值,方程都有两个不相等的实数根.
(2)如果方程的两个实数根为 x 1 , x 2 ,且 k 与 x 1 x 2 都为整数,求 k 所有可能的值.