如图,已知正方形ABCD,点P为射线BA上的一点(不和点A,B重合),过P作PE⊥CP,且CP=PE.过E作EF∥CD交射线BD于F.若CB=6,PB=2,则EF= ;DF= ;请探究BF,DG和CD这三条线段之间的数量关系,写出你的结论并证明;如图2,点P在线段BA的延长线上,当tan∠BPC= 时,四边形EFCD与四边形PEFC的面积之比为.
(本小题满分8分)如图,在⊙中,为直径,,弦与交于点,过点分别作⊙的切线交于点,且GD与的延长线交于点.(1)求证:;(2)已知:,⊙的半径为,求的长.
(本小题满分8分)为弘扬中华传统文化,某学校决定开设民族器乐选修课.为了更贴合学生的兴趣,对学生最喜爱的一种民族乐器进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,共调查 名学生;(2)请把条形图(图1)补充完整;(3)求扇形统计图(图2)中,二胡部分所对应的圆心角的度数;(4)如果该校共有学生1500名,请你估计最喜爱古琴的学生人数.
(本小题满分7分)在平面直角坐标系中,过点向轴作垂线,垂足为,连接.双曲线经过斜边的中点,与边交于点.(1)求反比例函数的解析式;(2)求△的面积.
(本小题满分6分)年“植树节”前夕,某小区为绿化环境,购进棵柏树苗和棵枣树苗,且两种树苗所需费用相同.每棵枣树苗的进价比每棵柏树苗的进价的倍少元,每棵柏树苗的进价是多少元?
(本小题满分8分)如图,已知△ABC是等腰三角形,顶角∠BAC=α(α<60°),D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转α角到AE,过点E作BC的平行线,交AB于点F,连接DE,BE,DF.(1)求证:BE=CD;(2)若AD⊥BC,试判断四边形BDFE的形状,并给出证明.