如图,,分别为的边,上的点,且不与的顶点重合。已知的长为,,的长是关于的方程x2-14x+mn=0的两个根。(Ⅰ)证明:,,,四点共圆;(Ⅱ)若,且,求,,,所在圆的半径。
(1)证明:不论为何值时,直线和圆恒相交于两点; (2)求直线被圆截得的弦长最小时的方程.
平面,M、N分别是AB、PC的中点。 (1)求证:MN//平面PAB; (2)若平面与平面成的二面角, 求该四棱锥的体积.
在中,,. (1)求角的大小; (2)若最大边的边长为,求最小边的边长.
调查某市出租车使用年限和该年支出维修费用(万元),得到数据如下:
(1)求线性回归方程; (2)由(1)中结论预测第10年所支出的维修费用.()
如图是求的算法的程序框图. (1)标号①处填. 标号②处填. (2)根据框图用直到型(UNTIL)语句编写程序.