一条船上午8点在A处望见西南方向有一座灯塔B(如图),此时测得船和灯塔相距60海里,船以每小时30海里的速度向南偏西24º的方向航行到C处,这时望见灯塔在船的正北方向(参考数据:sin24º≈0.4,cos24º≈0.9) 求几点钟船到达C处 求船到达C处时与灯塔之间的距离.
有四张形状、大小和质地相同的卡片A、B、C、D,正面分别写有一个正多边形(所有正多边形的边长相等),把四张卡片洗匀后正面朝下放在桌面上,从中随机抽取一张(不放回),接着再随机抽取一张.(1)请你用画树形图或列表的方法列举出可能出现的所有结果;(2)如果在(1)中各种结果被选中的可能性相同,求两次抽取的正多边形能构成平面镶嵌的概率;(3)若两种正多边形构成平面镶嵌,p、q表示这两种正多边形的个数,x、y表示对应正多边形的每个内角的度数,则有方程px+qy=360,求每种平面镶嵌中p、q的值.
如图所示,直线AB与x轴交于点A,与y轴交于点C(0,2),且与反比例函数的图象在第二象限内交于点B,过点B作BD⊥x轴于点D,OD=2.(1)求直线AB的解析式;(2)若点P是线段BD上一点,且△PBC的面积等于3,求点P的坐标.
如图,四边形ABCD是平行四边形,作AF∥CE,BE∥DF,AF交BE与G点,交DF与F点,CE交DF于H点、交BE于E点.求证:△EBC≌△FDA.
(1)解不等式组:.(2)计算:
分解因式: .