列方程解应用题A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运20千克,A型机器人搬运1000千克所用时间与B型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料?
已知△ABC,∠BAC=45°,以AB、AC为边在△ABC外作等腰△ABD和△ACE,AD=AB、AE=AC,且∠BAD=∠CAE,连CD、BE交于F,连AF。 (1)①如图1,若∠BAD=60°,则∠AFE= 度; ②如图2,若∠BAD=90°,则∠AFE=度; (2)如图3,若∠BAD=a°,猜想∠AFE的度数(用a表示),并予以证明。
如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG. (1)求证:△ABD≌△GCA; (2)请你确定△ADG的形状,并证明你的结论.
如图,已知AM∥BN,AC平分∠MAB,BC平分∠NBA。 (1)过点C作直线DE,分别交AM、BN于点D、E,则AB、AD、BE三条线的长度之间存在何种等量关系?请直接写出关系式。 (2)如图,若将直线DE绕点C转动,使DE与AM交于点D,与NB的延长线交于点E,则AB、AD、BE三条线的长度之间存在何种等量关系?请你给出结论并加以证明。
如图所示,在△ABC中,AB=AC,AC边上的中线把三角形的周长分为24 cm和30 cm的两部分,求三角形各边的长.
已知:如图所示,△ABC中,AB=AC,点E在CA的延长线上,且∠AEF=AFE,求证:EF⊥BC。